Kangaroos in Side-Channel Attacks
نویسندگان
چکیده
Side-channel attacks are a powerful tool to discover the cryptographic secrets of a chip or other device but only too often do they require too many traces or leave too many possible keys to explore. In this paper we show that for side channel attacks on discrete-logarithmbased systems significantly more unknown bits can be handled by using Pollard’s kangaroo method: if b bits are unknown then the attack runs in 2 instead of 2. If an attacker has many targets in the same group and thus has reasons to invest in precomputation, the costs can even be brought down to 2. Usually the separation between known and unknown keybits is not this clear cut – they are known with probabilities ranging between 100% and 0%. Enumeration and rank estimation of cryptographic keys based on partial information derived from cryptanalysis have become important tools for security evaluations. They make the line between a broken and secure device more clear and thus help security evaluators determine how high the security of a device is. For symmetric-key cryptography there has been some recent work on key enumeration and rank estimation, but for discrete-logarithm-based systems these algorithms fail because the subkeys are not independent and the algorithms cannot take advantage of the above-mentioned faster attacks. We present -enumeration as a new method to compute the rank of a key by using the probabilities together with (variations of) Pollard’s kangaroo algorithm and give experimental evidence.
منابع مشابه
Side channel parameter characteristics of code injection attacks
Embedded systems are suggestive targets for code injection attacks in the recent years. Software protection mechanisms, and in general computers, are not usually applicable in embedded systems since they have limited resources like memory and process power. In this paper we investigate side channel characteristics of embedded systems and their applicability in code injection attack detection. T...
متن کاملError-Tolerant Algebraic Side-Channel Attacks Using BEE
Algebraic side-channel attacks are a type of side-channel analysis which can recover the secret information with a small number of samples (e.g., power traces). However, this type of side-channel analysis is sensitive to measurement errors which may make the attacks fail. In this paper, we propose a new method of algebraic side-channel attacks which considers noisy leakages as integers restrict...
متن کاملHow to Compare Profiled Side-Channel Attacks?
Side-channel attacks are an important class of attacks against cryptographic devices and profiled side-channel attacks are the most powerful type of side-channel attacks. In this scenario, an adversary first uses a device under his control in order to build a good leakage model. Then, he takes advantage of this leakage model to exploit the actual leakages of a similar target device and perform ...
متن کاملUsing Side Channel Attacks in the Human Computational Model
Recent works have looked at how to use human knowledge or computability in order to define or to achieve security. We take this approach one step further, and suggest to use cryptanalytic attacks in the human computational model. We have identified several instances where side channel attacks on human beings may be useful. We show for each of these cases the appropriate use of side channel atta...
متن کاملOn the Correctness of an Approach against Side-Channel Attacks
Side-channel attacks are a very powerful cryptanalytic technique. Li and Gu [ProvSec’07] proposed an approach against side-channel attacks, which states that a symmetric encryption scheme is IND-secure in side-channel model, if it is IND-secure in black-box model and there is no adversary who can recover the whole key of the scheme computationally in side-channel model, i.e. WKR-SCA ∧ IND → IND...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014